Telegram Group & Telegram Channel
Что вы знаете про калибровку уверенности/вероятности?

Калибровкой уверенности или вероятности называют процесс корректировки прогнозируемых данных классификатора, чтобы они точнее отражали реальную вероятность события.

Допустим, мы решаем задачу классификации с n классами. Модель выдаёт некоторые оценки принадлежности объектов к классам — уверенности. После этого каждый объект можно отнести к классу с максимальной оценкой. Возникает вопрос: какова вероятность, что ответ верный? Эту вероятность хотелось бы оценивать на этапе формирования ответа.

«Удобный» вариант сделать это — использовать предположение, что эта вероятность равна максимальной оценке алгоритма (уверенности). Если данное равенство выполняется с достаточной точностью, то можно сказать, что «классификатор хорошо откалиброван». Условия калибровки, в принципе, могут быть и другими. Например, можно хотеть, чтобы вообще все оценки соответствовали вероятностям.

Зачем нужна калибровка?

▫️Чтобы понимать, насколько результатам алгоритма можно доверять.
▫️Чтобы точнее решать задачи. Так, в языковых моделях при генерации текстов используются вероятности появления отдельных токенов.

#машинное_обучение



tg-me.com/ds_interview_lib/355
Create:
Last Update:

Что вы знаете про калибровку уверенности/вероятности?

Калибровкой уверенности или вероятности называют процесс корректировки прогнозируемых данных классификатора, чтобы они точнее отражали реальную вероятность события.

Допустим, мы решаем задачу классификации с n классами. Модель выдаёт некоторые оценки принадлежности объектов к классам — уверенности. После этого каждый объект можно отнести к классу с максимальной оценкой. Возникает вопрос: какова вероятность, что ответ верный? Эту вероятность хотелось бы оценивать на этапе формирования ответа.

«Удобный» вариант сделать это — использовать предположение, что эта вероятность равна максимальной оценке алгоритма (уверенности). Если данное равенство выполняется с достаточной точностью, то можно сказать, что «классификатор хорошо откалиброван». Условия калибровки, в принципе, могут быть и другими. Например, можно хотеть, чтобы вообще все оценки соответствовали вероятностям.

Зачем нужна калибровка?

▫️Чтобы понимать, насколько результатам алгоритма можно доверять.
▫️Чтобы точнее решать задачи. Так, в языковых моделях при генерации текстов используются вероятности появления отдельных токенов.

#машинное_обучение

BY Библиотека собеса по Data Science | вопросы с собеседований


Warning: Undefined variable $i in /var/www/tg-me/post.php on line 283

Share with your friend now:
tg-me.com/ds_interview_lib/355

View MORE
Open in Telegram


Библиотека собеса по Data Science | вопросы с собеседований Telegram | DID YOU KNOW?

Date: |

In many cases, the content resembled that of the marketplaces found on the dark web, a group of hidden websites that are popular among hackers and accessed using specific anonymising software.“We have recently been witnessing a 100 per cent-plus rise in Telegram usage by cybercriminals,” said Tal Samra, cyber threat analyst at Cyberint.The rise in nefarious activity comes as users flocked to the encrypted chat app earlier this year after changes to the privacy policy of Facebook-owned rival WhatsApp prompted many to seek out alternatives.

A Telegram spokesman declined to comment on the bond issue or the amount of the debt the company has due. The spokesman said Telegram’s equipment and bandwidth costs are growing because it has consistently posted more than 40% year-to-year growth in users.

Библиотека собеса по Data Science | вопросы с собеседований from tw


Telegram Библиотека собеса по Data Science | вопросы с собеседований
FROM USA